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I. INTRODUCTION

In order to reliably deploy robots in large-scale envi-
ronments, it is fundamental for robots to have accurate
localization. Robot relocalization is the act of determining
the position in a robot in a previously mapped environment.
Relocalization in small-scale environments is usually done
by maintaining a contiguous map of the entire environment
([4], [15]), but this does not scale. Methods to combat this
scaling problem have proposed splitting large, global maps
into smaller metrical maps [7], [11], [12]. However, this
adds another dimension to the relocalization problem, since
the algorithm must additionally determine which map is it
located on. Probabilistic localization algorithms are governed
by the total law of probability, so it is impossible to indicate
low, or even zero, belief a robot is anywhere on a given map
(i.e. a particle filter will always maintain some belief of the
robot location).

To this end, we present a system for online map recog-
nition method using Bayesian methods. We model the map
recognition problem as a Hidden Markov Model where the
state is the belief that we are in a given map and observations
are particle distributions. We developed a heuristic-based
likelihood model to model the conditional probability of a
particle distribution given a map. We present experimental
results show our algorithm correctly matches the maps to
the environments.

Fig. 1. Visual example of the problem statement

II. RELATED WORKS

A. Relocalization

Previous attempts to solve the relocalization problem
assume that there is only a single map being considered.
However, there are some similarities between relocalization
across multiple maps and localization across large global
maps, or topological maps.

In [14], relocalization is performed over a topological map.
While the nature of a topological map contains much less
metric information than the occupancy grids our method
assumes we have access to, the nature of choosing which
node in the topological map the robot is occupying is analo-
gous to choosing the correct metrical map for relocalization.
However, this method does heavily differentiate from ours
by using image input as opposed to LIDAR point clouds.
By using LIDAR point clouds, we can take better advantage
of our occupancy grid maps.

An addition to the Atlas SLAM framework ([1]) localizes
on a global map built by applying scan-matching algorithm
on multiple local maps. The similar aspect of this work to
our method is the nature of matching the local maps to their
global maps to expand their global map. This work builds
each local map individually, and then performs matching
from the local maps to the global map, which is a major
departure from our work since we do not perform additional
mapping. We instead attempt to relocalize directly from the
particle distributions.

ScanContext ([8]) is another example of place recognition
from point clouds. The work uses spatial descriptors to
generate similarity scores between places mapped. Similar to
our method, this work does not rely on any previous training
or histogram data. This is largely optimized to be used for
loop detection, so instead of taking multiple maps to analyze,
this method splits a single map into multiple different parts
to determine the different places to analyze.

Additionally, there are a number of works that use deep
learning to perform place recognition using images ([2], [3])
or other sensors like radar ([10]). While these methods have
found some success, our method does not require any form
of training, which means it can operate in environments
regardless of available training data.

B. AMCL

Adaptive Monte-Carlo Localization (AMCL) [5] is a par-
ticle filter based relocalization approach. Unlike traditional
particle filters, AMCL adapts the number of particles to
maintain a larger number of particles when the robot’s
location is uncertain and a lesser number when the certainty
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is high. AMCL has been proven to be more effective in global
relocalization than traditional (constant sample size) particle
filters or likelihood-based adaptive particle filters as in [6]
and [9]. AMCL calculates the number of particles necessary
to remain within some ε of the true distribution through a
method they call KLD-sampling. Because of its performance
in the global relocalization task as well as the pre-compiled
ROS packages, we chose to use AMCL in our experiments.

C. Hidden Markov Model

A Hidden Markov Model (HMM) [13] is a probabilistic
graphical model used to model the joint distribution of a state
random variable, Xt, observed through noisy measurements,
Yt. HMM have two major components: transition model,
P (xt | xt−1) and likelihood model, P (yt | xt). The joint
distribution of a HMM is defined as:

P (X,Y ) = P (x0)

T−1∏
t=1

P (xt | xt−1)P (yt | xt) (1)

III. PROBLEM STATEMENT

Suppose an autonomous agent has generated multiple,
disconnected metrical maps of an environment. The robot is
then set to localize itself to this set of maps without an initial
estimate of its prior position. We seek to determine which
map is most likely for the robot to be currently located.
Formally, given a set of metrical maps M , and a stream
of particle distributions for each map Pm, we model the
problem as a HMM. Our state, Xt, represents our belief
we are in a given map. Our observations, Yt are the particle
distribution Pm ∀m ∈M . We assume a static state transition
model and implemented a heuristic based likelihood model
explained in IV-B. Figure 2 shows a graphical representation
of our HMM. We utilize 1 to infer the belief that we are in
a given map.

Fig. 2. Hidden Markov Model(HMM): Dark nodes are observed, light
nodes are hidden.

For our particular formulation, we are using occupancy
grids to represent mapped environments and particle distri-
butions generated by AMCL as observations. Since our like-
lihood model operates on particle distributions, our algorithm
is sensor agnostic.

IV. METHODOLOGY

A. Map Recognition Pipeline

Given a large-scale map, we will separate it into a set
of small-scale maps and perform accurate localization on
them. Because the current position of robot is unknown, for

each sub-environment, we take the LIDAR scans as sensor
data and localize the robot over each small-scale map using
AMCL. We then update the belief of being located in that
map according to Equation 1. The implementation of our
algorithm is shown in Algorithm 1.

Algorithm 1 Map Recognition Pipeline
Require: LIDAR scans of Environment Z ←
{z1, z2, ...zN}, Timesteps T , Number of maps N,
Maps M ← {m1,m2, ...mN}
X0

i ← 1/N ∀ i ∈ [1, 2, ..., N ] ▷ Initialize with uniform
belief in all maps
for t = 1→ T do

for i = 1→ N do
Pi ← AMCL(Mi, Zt) ▷ Generate particle

distribution
Xt

i ← Xt−1
i ∗ Likelihood(Pi |Mi) ▷ Update

belief
end for

end for
m∗ = argmaxi X

T
i ▷ Get map with max confidence

return m∗

B. Belief Update Equation

We use two main factors in calculating our place recogni-
tion scores from the adaptive particle filter output: covariance
of the estimated position, and the ratio of particles that exist
in free space. The first factor is an effective measurement as
it provides the particle filter’s own confidence in its estimate.
The particle filter should only reach consensus if it can
properly match the features of the map of the environment to
the laser scans it is given. If there is no strong match there,
then the particle filter will not converge, resulting in a high
covariance.

However, there are some cases where the particles may
still reach some convergence on incorrect maps, especially
if futures across maps are similar. To mitigate the intensity of
this false belief, we also factor in how many particles are not
in free space of the given map. Particles that occupy occupied
or unknown space are physically impossible locations for a
robot. Therefore, a particle distribution with a high number
(ratio) of physically impossible robot locations decreases
the likelihood that we are located on that map. Figure 3
demonstrates the necessity of this metric by contrasting the
position of particles on a map that matches the environment
a robot is currently occupying and a map that does not match
the current environment. Although both particle filters show
some sign of convergence, the distribution on the map in the
right is almost entirely in unknown space.

We combine these two factors in equation 2, where Σi

is the covariance of particle filter pose estimate for map i,
f(pi,mi) is the percentage of particles not occupying free
space. We designed this belief update function to reward
maps that have both low covariance, and have the most
particles in free space positions.
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Fig. 3. Both images show the spread of particles form a particle filter
after 60 seconds attempting to localize. The map on the left matches the
environment the robot is currently receiving laser scans from, whereas the
map on the right is a different candidate map that it could have been
occupying.

P (mi|pi,Σi) ∝
1

f(pi,mi)||Σi||
(2)

Since we maintain belief over each map accumulated over
previous laser scans, we update our belief by multiplying the
our belief for the current time step by our accumulated belief,
and then normalizing.

V. EXPERIMENTS AND RESULTS

A. Data collection

All data in this work is collected by ourselves. We con-
duct the experiments with Gazebo simulation and visualize
the localization process with RVIZ. We used a ROBOTIS
Turtlebot3 as our robot platform. As shown in Figure 5, we
chose 6 environments, including 4 rooms from the virtual
apartment and 2 virtual worlds of different shapes. After
mapping each environment, we conducted our experiment by
attempting to localize in each map given a 3 meter X 1 meter
@ 0.1 m/s robot trajectory. During each trial we record the
particle distributions, estimated pose and covariance at each
filter update.

(a) Virtual apartment (b) Virtual Worlds
Fig. 5. Experiment environments

For example, Figure 6 shows particle distributions during
2 different trials. In both trials, we are using LIDAR scans
coming from the garage environment but attempting to
localize in the garage and turtleworld in A and B, respec-
tively. When localizing on the matched map, the particles
converge quickly and most of them are located in the free

space of the map (white area in RVIZ). As contrast, when
localizing on a incorrect map, the particles are distributed in
a large range with most of them occupying invalid cells of
the map (gray and black area in RVIZ). This performance
demonstrates that our approach is feasible. We could find
the target map by analyzing the covariance and the rate of
invalid particles from AMCL data.

(a) Environment: garage, Map: garage

(b) Environment: garage, Map: turtle world
Fig. 6. Particle distributions during localization on different maps

B. Final Belief Results

During each experiment, we would begin with a uniform
belief distribution over the candidate maps, and then update
this belief after each particle filter update. The particle filter
does not update at a constant rate over time, instead only
updating after the robot has moved a minimum distance,
or rotated a minimum amount. We set the particle filter
parameters to update once every 20cm of translation, and
every 30◦ of rotation. Since our method relies on output
from the particle filter, we define that the k time step of our
method refers to our output after k particle filter updates.

We also set a maximum belief threshold to stop performing
belief updates once we were confident we knew which
environment the robot was traversing. Once any of our beliefs
exceeded 0.95, we would cease updates and take the rankings
after that time step as our final rankings.

You can see our experimental results in Table I, which
displays the final rankings from each experiment. We iden-
tified the correct environment in all of our experiments.
Additionally, in Table II, we show how many time steps
it took until our algorithm finished. We used at most 10
time steps to identify our current environment. We depict
the evolution of our belief over time in each experiment in
Figure 4. There are times where our algorithm does hold
false beliefs, which tend to occur when one of the incorrect
maps false converges it’s position estimate, resulting in a low
covariance. However, this is offset by the number of particles
not occupying valid locations, and never breaches our 0.95
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Fig. 4. Evolution of our map belief over time. The X axis represents the the number of time steps (which is equal to the number of particle filter updates
that are performed), and the Y axis represents the belief of each map.

Environment
Bedroom Study Garage Dining Room Turtle World Obstacle World

Bedroom 1 6 6 2 4 4
Study 3 1 4 4 5 5

Map Garage 6 2 1 6 6 6
Dining Room 4 3 2 1 2 3
Turtle World 5 4 3 5 1 2
Obstacle World 2 5 5 3 3 1

TABLE I
MAP RANKINGS FROM EXPERIMENTATION: EACH COLUMN REPRESENTS THE ENVIRONMENT THE ROBOT COLLECTED LASER DATA FROM, AND EACH

NUMBER IN A COLUMN IS THE RANKING OF THE BELIEF OF THE CORRESPONDING MAP.

Environment
Bedroom Study Garage Dining Room Turtle World Obstacle World

10 6 7 6 1 1

TABLE II
NUMBER OF STEPS TAKEN BY EACH ENVIRONMENT TO REACH 0.95 BELIEF

belief threshold. Over time, the correct map always surpasses
any false beliefs.

C. Belief Update Ablation Study

To see how the different factors of our belief update
function contributed to our final ranking, we conducted
ablation experiments, using the two following variants of our
belief update function:

P (mi|pi,Σi) ∝
1

||Σi||

P (mi|pi,Σi) ∝
1

f(pi,mi)

where Σi is the covariance of particle filter pose esti-
mate for map i, f(pi,mi) is the percentage of particles
not occupying free space. The first equation only uses the
covariance of the pose estimate, whereas the second only
uses the number of particles in overlapping space. In the
ablation experiments, we used the same 0.95 threshold, and
the same parameters regarding updates to the particle filter.
The evolution of our belief using only covariance can be
seen in Figure 7, while the evolution of our belief using
only overlapping particles can be seen in Figure 8.

Some environments, such as the garage and turtleworld,
match correctly when using both the covariance and the
overlap. However, there are numerous examples where the
incorrect map will score highly on one metric, but not the
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Fig. 7. Map belief updates - considering the particles covariance only. The X axis represents the the number of time steps (which is equal to the number
of particle filter updates that are performed), and the Y axis represents the belief of each map

Fig. 8. Map belief updates - considering the invalid particle rate only. The X axis represents the the number of time steps (which is equal to the number
of particle filter updates that are performed), and the Y axis represents the belief of each map

other. The most extreme example of this is the diningroom
environment using only covariance. In this case, by the end
of our experiment, the bedroom was what we believed was
our true environment. This demonstrates why we need to
use the combination of the two criteria together, since they
compliment each other so we do not falsely believe we are
occupying the wrong map.

VI. CONCLUSION AND FUTURE WORK

In this work, we work toward online map recognition by
modeling the problem as a Hidden Markov Model and using
Bayesian belief updates. We also developed a heuristic-based
likelihood model. In experiments, we show our method cor-
rectly recognizes the map 100% of the time. Our experiments
also display a relatively quick time to 95% belief, especially
in very distinct environments. Furthermore, our work can be
applied to much more complex scenarios, as long as with
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sufficient maps and sensor data to perform particle filter.
From our results, neither the covariance and invalid par-

ticles can give us a accurate prediction solely. Similar
environments and landmarks made the particles filter to
converge quickly, which will return a reasonable covariance
and confused the belief update. By adding invalid filter as a
factor, we could penalize the particles at occupied space or
unknown space even if they converge at a rapid rate.

While our experiments demonstrate a promising result in
Gazebo simulation, its performance on large datasets still
remains unknown. In the future, we shall perform map
recognition on more different environments. In addition, we
will examine and optimize the performance of our work
on similar maps. It is also interesting to combine sensor
information as a factor in belief update process.

The dataset and code of this project can be found at
https://github.com/camkisailus/ROB530_FinalProject.We
also uploaded a video presentation at
https://www.youtube.com/watch?v=pzFOLR6G_VEt=7s.
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